


Why Characterize Planets!?




Giant Planets are
Interesting

Radial velocity & SIM will determine masses and orbits
Giants are not interesting for astrobiology

Giant planet science provides no heritage for terrestrial
planet characterization and is a “niche” field

Small, giant planet-focused missions are not interesting,

not on the critical path to detecting Earths,

and are not worth flying




Giant Planets Interesting

® Radial velocity & SIM will determine masses and
orbits: Planets are more than masses on springs and well
characterized planets are fiducials for more distant or
younger objects which may lack RV/astrometric masses

® Giants are not interesting for astrobiology: they
brovide a record of stellar system formation & perhaps
volatile transport

® Giant planet science provides no heritage for
terrestrial planet characterization: provide end to end
experience of planet characterization, heritage for bigger
efforts



Giant Planets Interesting

® Hot Jupiters have yielded far more interesting
science than anyone ever imagined

® There will be a great diversity of worlds (“There is
more in heaven and Earth...”’); warm Neptunes to cold
Jupiters -- mass alone does not characterize

® More prosaically...

® Each planet costs ~$100,000+ to discover, we
should capitalize on the investment

® NASA routinely spends several hundred million
(e.g.,JUNO) to several billion (e.g., Cassini) to
study one planet






Characterization

® Mass - Easiest, but need "
to model how well a \&\\ﬁ \"4‘ "ﬂ//f’//f
few coronagraphic
images can resolve sin |

® Radius - Scattered light
alone does not tightly
constrain radius since
albedo uncertain
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Synergy with IR
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Constraining R

L =41R%cT% = (1 — A R*(n F,) @

Mid-IR Visible

easily 30% or more
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Conventional methods will
not give accurate radii

Need Gravity Indicators

Spectra!
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Characterization

Mass

Radius

Albedo

Effective temperature

® Equilibrium temperature

® Internal luminosity



Characterization

MER

Radius

Albedo

Effective temperature

® Equilibrium temperature
® Internal luminosity

Atmospheric Composition



® Jupiter

¢ Uranus
A Neptune
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Composition Also Requires
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Fortney & Marley



F480W  F560W F677W F803W

F460M F575M F650M F750N F830M
F728N  F793M  F863N

1 T T L] L] | T L] T T 1

!
8
@
S
<C
Q
=
@
=
o
0}
()







0.4 o

0.2

0.0|
0.2
_004; Sudarsky&Burrov.: %3
—0.0[ U
—0.8 2

_1.0:..|-h1..[."71.|..|..|...:

-0.6 -0.4 -0.2 -0.0 0.2 0.4
(Wide Green)—(Wide Red)

01 S

i
-
O
B
-
O
L
O
S,
=
S—r
I
~~
o
O
aZ
O
=
=
~—







higher metallicity
——-

ol

cooler

=
M
©
0
L
=
o
™
0
L

0.5
F793M - FB30M




At Low Spectral Resolution

® Challenges
® Clouds shape continuum
® Hazes are a concern

® Can place constraints on
® Composition
® Gravity and hence radius

o C/O

® Spectra are strongly prefered






Characterizing Earths
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A Brief History of Earth’'s Atmosphere
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Terrestrials

® Hazes, clouds, etc. are also concerns

® |nformation is in band depths and spectral
shapes

® |s it possible to get adequate S/N with modest
sized telescope?



IT5 AN EARTH-LIKE PLANET
OUTSIDE OUR SOLAR SYSTEM
THAT MIGHT POSSIBLY







